Pathophysiology

Pathophysiology

45-year-old woman presents with chief complaint of 3-day duration of shortness of breath, cough with thick green sputum production, and fevers. Patient has history of COPD with chronic cough but states the cough has gotten much worse and is interfering with her sleep. Sputum is thicker and harder for her to expectorate. CXR reveals flattened diaphragm and increased AP diameter. Auscultation demonstrates hyper resonance and coarse rales and rhonchi throughout all lung fields. Pathophysiology

Don't use plagiarized sources. Get Your Custom Essay on
Pathophysiology
Just from $15/Page
Order Essay

An understanding of the cardiovascular and respiratory systems is a critically important component of disease diagnosis and treatment. This importance is magnified by the fact that these two systems work so closely together. A variety of factors and circumstances that impact the emergence and severity of issues in one system can have a role in the performance of the other.

Effective disease analysis often requires an understanding that goes beyond these systems and their capacity to work together. The impact of patient characteristics, as well as racial and ethnic variables, can also have an important impact. Pathophysiology

An understanding of the symptoms of alterations in cardiovascular and respiratory systems is a critical step in diagnosis and treatment of many diseases. For APRNs this understanding can also help educate patients and guide them through their treatment plans.

In this Assignment, you examine a case study and analyze the symptoms presented. You identify the elements that may be factors in the diagnosis, and you explain the implications to patient health.

ORDER A PLAGIARISM FREE PAPER NOW

Assignment (1- to 2-page case study analysis)

In your Case Study Analysis related to the scenario provided, explain the following

  • The cardiovascular and cardiopulmonary pathophysiologic processes that result in the patient presenting these symptoms.
  • Any racial/ethnic variables that may impact physiological functioning.
  • How these processes interact to affect the patient.

Pathophysiology involves either cortical or subcortical pathology, as established with neurophysiologic and imaging studies. Rasmussen’s syndrome is an autoimmune disease involving one hemisphere, with cortical inflammation and atrophy, and thus this is a secondary myoclonus. Pathophysiology is unknown. Despite the identification of antiglutamate receptor antibodies in some children, immune-modulating therapies do not have long-term benefit and only hemispherectomy is curative.66 A case has also been described after gliomatosis cerebri in two children.67 Some authors have suggested that EPC be used to designate cases with cortical origin, and myoclonia continua be used for those originating elsewhere in the nervous system

  • The pathophysiology of Parkinson’s disease is death of dopaminergic neurons as a result of changes in biological activity in the brain with respect to Parkinson’s disease (PD). There are several proposed mechanisms for neuronal death in PD; however, not all of them are well understood. Five proposed major mechanisms for neuronal death in Parkinson’s Disease include protein aggregation in Lewy bodies, disruption of autophagy, changes in cell metabolism or mitochondrial function, neuroinflammation, and blood-brain barrier (BBB) breakdown resulting in vascular leakiness. Pathophysiology
  • The pathophysiology of heart failure is a reduction in the efficiency of the heart muscle, through damage or overloading. As such, it can be caused by a wide number of conditions, including myocardial infarction (in which the heart muscle is starved of oxygen and dies), hypertension (which increases the force of contraction needed to pump blood) and amyloidosis (in which misfolded proteins are deposited in the heart muscle, causing it to stiffen). Over time these increases in workload will produce changes to the heart itself.
  • The pathophysiology of multiple sclerosis is that of an inflammatory demyelinating disease of the CNS in which activated immune cells invade the central nervous system and cause inflammation, neurodegeneration and tissue damage. The underlying condition that produces this behaviour is currently unknown. Current research in neuropathology, neuroimmunology, neurobiology, and neuroimaging, together with clinical neurology provide support for the notion that MS is not a single disease but rather a spectrum Pathophysiology
  • The pathophysiology of hypertension is that of a chronic disease characterized by elevation of blood pressure. Hypertension can be classified by cause as either essential (also known as primary or idiopathic) or secondary. About 90–95% of hypertension is essential hypertension.[20][21][22][23]
  • The pathophysiology of HIV/AIDS involves, upon acquisition of the virus, that the virus replicates inside and kills T helper cells, which are required for almost all adaptive immune responses. There is an initial period of influenza-like illness, and then a latent, asymptomatic phase. When the CD4 lymphocyte count falls below 200 cells/ml of blood, the HIV host has progressed to AIDS,[24] a condition characterized by deficiency in cell-mediated immunity and the resulting increased susceptibility to opportunistic infections and certain forms of cancer Pathophysiology